Una muestra de sangre desvelará con tiempo si un paciente sobrevivirá al Covid o no

Publicado: 19/01/2022
Un revolucionario sistema puede suponer un antes y un después en la predicción de la evolución de los enfermos de Covid ingresados
Un revolucionario sistema puede suponer un antes y un después en la predicción de la evolución de los enfermos de Covid ingresados en hospitales. Así, científicos europeos han demostrado que las muestras de sangre de un paciente gravemente enfermo a causa de esta enfermedad, en concreto las proteínas de su plasma sanguíneo, se pueden analizar con un modelo de aprendizaje automático para predecir con semanas de antelación si la persona sobrevivirá o no. Los resultados los publican en la revista científica PLOS Digital Health, según recoge el portal Agencia Sinc.

“Nuestro estudio muestra que una combinación de marcadores proteómicos, combinados en un modelo de predicción de riesgo basado en inteligencia artificial, puede predecir bastante bien la probabilidad de que un paciente individual muera o sobreviva a la covid”, señala el coautor Florian Kurth del hospital universitario Charité en Berlín (Alemania). Afirma que "además, la predicción del riesgo proteómica fue mucho mejor que el pronóstico derivado de las puntuaciones de evaluación de riesgo que se usan habitualmente en la asistencia clínica”.

De esta manera, los autores comenzaron estudiando los niveles de 321 proteínas en muestras de sangre tomadas en 349 momentos o puntos temporales en 50 pacientes con covid-19 en estado crítico que estaban siendo tratados, con ventilación mecánica, en dos centros sanitarios de Alemania y Austria. Posteriormente se utilizó el aprendizaje automático para encontrar asociaciones entre las proteínas medidas y la supervivencia de las personas enfermas. Del grupo analizado, murieron 15 pacientes y el tiempo medio desde el ingreso hasta su fallecimiento fue de 28 días. En el caso de los que sobrevivieron, el periodo medio de hospitalización fue de 63 días. Con los análisis de sangre los investigadores identificaron 14 proteínas (como alfa-2 macroglobulina, APOC3,  GPLD1, varias serpinas...), cuyas medidas cambiaron a lo largo del tiempo y se movían en las gráficas en direcciones opuestas según los pacientes sobrevivían o no en cuidados intensivos.

“Curiosamente, los niveles plasmáticos de todas esas proteínas se habían visto alteradas por la enfermedad anteriormente, dependiendo de la gravedad, lo que nos hace confiar en nuestros hallazgos”, apunta Kurth, quien explica: “Las proteínas con mayor relevancia en el modelo de predicción pertenecen al sistema de coagulación y a la llamada cascada o sistema de complemento (un componente de la respuesta inmunitaria). Se sabe que ambos son especialmente importantes para la fisiopatología y la gravedad de la covid-19”.

Predicción de la supervivencia

A continuación, el equipo desarrolló su modelo de aprendizaje automático para predecir la supervivencia a partir de una única medición temporal de las proteínas relevantes, y lo probó en Austria con 24 pacientes en estado crítico a causa del coronavirus.

Para este grupo, el modelo demostró un alto poder predictivo, logrando predecir correctamente a 18 de los 19 pacientes que sobrevivieron y cinco de las cinco personas que murieron.

Los investigadores concluyen que los análisis de proteínas en sangre, una vez que se validen en cohortes más amplias, pueden ser útiles tanto para identificar a los pacientes con mayor riesgo de mortalidad como para entender mejor la enfermedad y comprobar si un determinado tratamiento cambia la predicción al ser aplicado en casos individuales. “Ahora queremos ver si podemos transferir esta metodología desde instalaciones de investigación a un entorno cotidiano, a un laboratorio estándar de mediciones clínicas, además de evaluar el método en grupos más grandes de pacientes, y posiblemente también para otras enfermedades”, apostilla Kurth.

 

© Copyright 2024 Andalucía Información